TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Foreward</td>
<td>3</td>
</tr>
<tr>
<td>II. PTFE As Expansion Joint Material</td>
<td>4</td>
</tr>
<tr>
<td>III. Anchor, Guide & Support Requirements</td>
<td>4-6</td>
</tr>
<tr>
<td>IV. Sample Installations</td>
<td>6-9</td>
</tr>
<tr>
<td>V. System Design Check-List</td>
<td>10 & 11</td>
</tr>
<tr>
<td>VI. Bolting Considerations</td>
<td>12</td>
</tr>
<tr>
<td>VII. Liners & Shields</td>
<td>12</td>
</tr>
<tr>
<td>VIII. Specification Sheet</td>
<td>12 & 13</td>
</tr>
<tr>
<td>IX. Installation Notes</td>
<td>13</td>
</tr>
<tr>
<td>X. Summary</td>
<td>14</td>
</tr>
<tr>
<td>XI. Bibliography</td>
<td>14</td>
</tr>
<tr>
<td>XII. Appendix</td>
<td></td>
</tr>
<tr>
<td>A) Symbol Nomenclature</td>
<td>15</td>
</tr>
<tr>
<td>B) Pipe Guide Spacing</td>
<td>15</td>
</tr>
<tr>
<td>C) Coefficients of Thermal Expansion</td>
<td>16 & 17</td>
</tr>
<tr>
<td>D) Pressure Conversion Chart</td>
<td>18</td>
</tr>
<tr>
<td>E) Conversion Chart — Feet Head of Water to PSI</td>
<td>19</td>
</tr>
<tr>
<td>F) Steam Table</td>
<td>19</td>
</tr>
<tr>
<td>G) Water Hammer Design Data</td>
<td>19</td>
</tr>
<tr>
<td>H) Expansion Joint Data Sheet</td>
<td>20</td>
</tr>
<tr>
<td>I) Installation Instructions</td>
<td>21</td>
</tr>
<tr>
<td>J) Typical PTFE Expansion Joint Installations</td>
<td>22 & 23</td>
</tr>
</tbody>
</table>

This manual is offered as an aid to the piping designer or maintenance engineer in the proper utilization of expansion joints in piping systems. **It is not intended to be used as a design manual.** The information contained herein does not constitute a warranty of any kind, expressed or implied, of Ethylene Corporation Flexjoints® or their fitness for any specific use.
I. Foreword

Piping systems of any sort, whether used for the conveyance of either innocuous or corrosive liquids, are generally subjected to problems relating to temperature changes, vibration, or misalignment. These conditions, if not compensated for by some flexibility in the pipe structure, will impose either high stresses in the piping or excessive loads on connected equipment.

Piping code compliance requires that careful attention be paid to piping systems and reactions (specifically paragraphs, 3191.1 of ANSI B31.3 1980, the Piping Code for Petroleum Refineries and Chemical Plants).

While there are a number of ways in which the engineer can design "flexibility" (such as "pipe loops" or "changes-in-direction") into the piping system, we will be restricting ourselves to a discussion of one of such methods, namely PTFE bellows and specifically Flexijoints®.

Bellows expansion joints are installed in pipelines to:
1. compensate for thermal expansion/contraction
2. reduce vibration and sound transmission
3. compensate for settling of auxiliary equipment such as tanks, columns, etc.
4. reduce stress imposed on fragile mating flanges and nozzles

But: Expansion joints should never be used to compensate for misalignment unless such misalignment is a calculated basis of design.

While a bellows expansion joint will often prove to be the most economical solution to pipe movement problems, it should be recognized that **Design Parameters And Not Cost** must determine the ultimate choice.

In consideration or application of a bellows type expansion joint, it should be recognized that:

These joints are not commodity items; they are precision mechanical equipment and must not be casually specified or arbitrarily dropped into a piping system.

Their application requires careful engineering analysis to insure that they function up to their design parameters.

When an expansion joint fails, it is usually for one of two reasons: improper application or faulty installation. Improper application includes wrong material selection, poor piping design and specification procedures. Faulty installation includes improper installation of the piping and it’s attendant restraints, as well as mishandling of the bellows.

A single expansion joint can absorb piping movements in any combination of three degrees of freedom; axial, lateral or angular misalignment. These movements can occur either individually or simultaneously. (See Figure 1) While an Ethylene Flexijoint can also be subjected to small amounts of torsion, it is not considered good design practice to impose torsional moments on a bellows.

It is important to note that while a bellows will lower the forces caused by thermal displacement strains, it will not eliminate them entirely. This is especially true of metallic and elastomeric bellows; their spring rates remain fairly constant throughout the life of the application. However, a PTFE bellows, such as the Ethylene Flexijoint® will experience an approximate 50% reduction in the forces required to deflect the bellows during the first twenty-four hours of operation, due to the unique creep behavior of PTFE. This reduction of deflection force is particularly useful when dealing with glass-lined or fiberglass reinforced plastic piping and equipment.

Throughout this manual, reference will continually be made to the standards of the Expansion Joint Manufacturers Association, Inc. (EJMA). While Ethylene Corporation is not a member of this association, it being made up entirely of metallic bellows manufacturers) Ethylene does feel that these standards are an excellent guide to accepted good engineering practice regarding the utilization of bellows type expansion joints. All piping designers responsible for the implementation of bellows into piping systems should have a copy of these standards available for ready reference.

![Figure 1](image)

1. Flexijoint® is the registered trademark of PTFE bellows manufactured by Ethylene Corp.
II. PTFE as Expansion Joint Material

Bellows type expansion joints are manufactured in PTFE, metallic, elastomeric, and fabric materials. In this Guideline, it is assumed that the piping designer has specified a PTFE bellows for one of the following reasons:

1. Long Flex-Fatigue Life: PTFE bellows exhibit a flex-fatigue life far superior to metal or rubber when subjected to flexural stressing, either intermittently or continually.

2. Chemical Resistance: PTFE has near universal corrosion resistance and is not subject to chloride stress corrosion, caustic embrittlement, ozone degradation, etc.

3. Spring Rate: PTFE expansion joints have low spring rates for axial, lateral and angular movement. This becomes critical when mating to stress sensitive equipment at elevated temperatures.

4. Face to Face Dimension: PTFE expansion joints offer short face to face dimensions thus saving space and permit a more compact design layout.

5. Low Acoustical Impedance: PTFE bellows are unexcelled in their ability to dampen vibration and noise.

III. Anchor, Guide, and Support Requirements

The proper operation of expansion joints requires proper piping alignment and anchoring. This is accomplished by use of pipe restraints, commonly called pipe supports. Anchors, guides and supports have a similar primary function; to restrain the thermal growth of a piping system, thus directionally influencing its displacement. Therefore, through proper use of pipe restraints, it can be assured that the only movements occurring in a piping system are those intended by the piping designer.

Pipe restraints may be divided into three categories:

1. Anchors: both main anchors, and intermediate anchors.

2. Guides: including alignment guides and lateral restraints.

3. Supports: which includes slides and hangers.

While it is true that anchors and guides also support the pipe, their main function is to directionally influence the growth of the piping system. Thus, Ethylene prefers the term "pipe restraint", rather than referring to all three types generically as "supports".

Thermal growth cannot be contained. To illustrate this, imagine a straight piece of pipe of any given length. Anchor it at both ends. These anchors are immovable objects. Next, apply an increase in temperature to the pipe; this increase in temperature will cause a change in the length of the pipe if the pipe is unrestrained. If the pipe is restrained, then a force will result from the pipe's inability to move freely. Now we have an irresistible force (due to the change in temperature) and an immovable object (the pipe anchors). In real life this paradox cannot exist. Having had the foresight to equip our length of pipe with strain gauges, the following phenomenon would be observed: (Figure 2)

This movement could have been allowed by the failure of an anchor, or by the failure (buckling) of the pipe wall, as the pipe would behave like a compressively loaded column. These are gross manifestations of failure. A more subtle mode of failure, (particularly if this pipe were guided perfectly) would be a yielding of the pipe wall material, a sliding of the molecules of the wall material over one another, thus relieving the stress. This is a more insidious form of failure, as nothing will have appeared to have happened to the unaided eye, but it is a failure all the same. It is important to note that the thermal forces can theoretically become very high unless something relieves them.

Since it is now obvious that we cannot restrain thermal growth, we must use restraints to control and direct the movement that will occur in a thermally cycling piping system. Anchors will conveniently divide a piping system into smaller, individually moving segments. It is the function of expansion joints to absorb the growth that occurs between these anchors.

Connected equipment such as chemical reactor vessels, pumps, turbines, compressors, heat exchangers, etc., often function as anchors at terminal ends of piping systems. This means that any forces (and their resulting moments) will be transmitted to this equipment, just as they would be transmitted to any pipe.
anchor. It is a relatively simple matter to design enough "meat" into an anchor, but we must be extremely careful when we consider connected equipment.

Paragraph 319.1 of ANSI B31.3 1980 states that: "Piping systems shall have sufficient flexibility to prevent thermal expansion or contraction or movements of piping supports and terminals from causing:

a. Failure of piping or supports from overstress or fatigue;
b. Leakage at joints; or,
c. Detrimental stresses or distortion in piping or in connected equipment (pumps, turbines or valves, for example) resulting from excessive thrusts and moments in the piping."

Even if your particular piping system does not fall under the jurisdiction of the B31 piping codes, their guidelines are the industry standard for accepted good practice.

The amount of loading that can be applied to a piece of equipment is generally specified by the manufacturer. There are some guidelines published by independent organizations such as the American Petroleum Institute (API) standards for pumps, or the National Electrical Manufacturers Association (NEMA) standards for turbines. In all cases, the manufacturer of the individual piece of equipment should be notified of any loadings imposed on his equipment by the piping system.

Other than piping terminations at connected equipment, main anchors generally occur at:

a. Any change in direction of flow,
b. Between two expansion joints of different size installed in the same straight run,
c. At the entrance of a side branch into a main run,
d. Where a shut off or pressure reducing valve is installed in a pipe run between two expansion joints, and
e. At blind pipe ends.

The following paragraphs will outline the procedures for calculating the magnitude of the major axial forces acting on both main and intermediate anchors. It is important to remember that while the difference in cost between an adequately and inadequately designed anchor is nominal, the failure of an anchor will cause damage far costlier than that of the more conservative design. Thus, the engineer should recognize any and all lateral forces imposed on the anchor in addition to the axial forces.

Main pipe anchors must be designed to withstand all forces (and their resultant moments) imposed by all of the pipe segments to which they are connected. Should a pipe segment contain an expansion joint, these forces consist of those required to deflect the bellows (over it's full rated movement), the friction forces from the pipe guides, supports or directional anchors, and any thrusts resulting from internal pressure or fluid flow. Some applications may require that the engineer consider the piping system's deadweight (including insulation and flowing medium) as well as wind load or the result of a section of the system being bent, etc. Net loading on an anchor is calculated by vector addition of the forces acting on the anchor point and summation of the resulting moments about it.

The following are formulas useful in calculating loading on anchors. They are from EJMA standards:

Equation 1. \(F_s = a p \)
where \(F_s \) = static thrust (lbs.) due to internal pressure in the bellows.
\(a \) = pressure thrust area (in²)
\(p \) = design pressure (PSI)

Equation 1 is useful for applications involving straight runs of pipe that contain caps or shut-off valves. As this only gives us the force due to static pressure thrust, one must also add the force due to compression or extension of the bellows. \(F_m \), commonly called the spring force, and the frictional forces resulting from pipe restraints such as slides and guides, \(F_g \). Thus, the main anchor force \(F_m \) is calculated by **Equation 2**.

Equation 2. \(F_m = F_s + F_m + F_g \)

or

Equation 3. \(F_m = a p + F_m + F_g \)

Remember, that in order to determine the net load on the anchor, one must vector sum the forces imposed on it by each of the pipe segments to which it is attached.

It must be noted here that Ethylene FlexiJoints®, due to the creep behavior of PTFE, exhibit spring rates differently than do metal bellows. In reference to Ethylene Bulletin 2002, pages 2 and 3, "Strain Factors", you will note that the force resulting from deflection of an Ethylene FlexiJoint diminishes with time. This is because the material yields, (creeps or cold-flows) as a result of the strains imposed on it by the deflection, thus relieving these internal strains. However, to be conservative, one should consider the instantaneous strain factor as the spring rate in factor \(F_m \) of **Equation 3**.

If an elbow is contained in a segment that also contains an expansion joint, the effects of the centrifugal thrust at the elbow due to the fluid flow must also be considered.

Equation 4. Centrifugal thrust, \(F_p = \frac{2 A P V^2 \sin \Theta}{g} \)

Where:
\(A \) = Internal area of pipe (FT.²)
\(P \) = Fluid density (lbs. per FT.³)
\(V \) = Velocity of fluid (FT per sec.)
\(g \) = Gravitic constant (32.2 FT per sec. per sec.)
\(\Theta \) = Angle of pipe bend (degrees)

The forces imposed on intermediate anchors are calculated in the same way as those for main anchors. The difference being that any sustained loads, such as pressure thrusts (\(F_s \) from **Equation 1**), will cancel out. Thus, intermediate anchor loadings will always be lower in magnitude than main anchor loadings.

Of prime importance to the proper functioning of an Ethylene FlexiJoint® is the proper alignment of the adjoining pipe. Expansion joints will perform as designed only when the movements they absorb are those that they were designed to absorb. Pipe guides are necessary to assure that only intended movements are
imposed on a bellows. This will minimize distortions in the bellows. Buckling, a form of distortion, is a function of two things: the discontinuity in the pipe wall caused by the flexibility of the bellows and the internal pressure loadings, which cause the pipe to act like a compressively loaded column.

Pipe guides or sleeves are frameworks attached to rigid structures which permit pipe movement in only one axis, usually the longitudinal axis. A planar guide, or lateral restraint, is a guide that is modified to allow movement in one plane in addition to movement axially. The planar guide, or lateral restraint, is only used in applications involving "L" or "Z" shaped pipe configurations.

Proper design of pipe guides must permit sufficient clearance between their fixed and moving parts to insure proper guiding without inducing excessive friction. It is important to note that while most commercially available guides are acceptable, they must be installed carefully to insure proper functioning; if not installed properly, you may end up with an anchor and not a guide. Serious consideration should also be given to guiding mechanisms lined with PTFE to attain minimum friction losses.

Roller supports, U-bolts, or pipe hangers, since they only support the deadload of the piping system, are not to be considered proper guides. However, roller supports may be used as guides providing that a minimum of three, or preferable four, rollers are used and are equally spaced circumferentially on the pipe.

As was noted with anchors, the materials of construction for the pipe guides must be sufficiently strong to provide proper rigidity under design operating conditions. Guides, like anchors, must be able to sustain lateral forces as high as 15% of the total axial force; their design must be conservative. Care must be taken to insure that there will be no relative shifting of the guides due to movement of the structures to which they are attached.

It is important that the first guides be located within four pipe diameter of the expansion joint. The following formula, from EJMA, will be useful for calculating the intermediate guide spacing:

Equation 5. \(L = 0.131 \sqrt{\frac{E I}{p a + f e_x}} \)

Where:
- \(L \) = maximum intermediate guide space, (feet)
- \(E \) = modulus of elasticity of pipe material, (psi)
- \(I \) = moment of inertia of pipe (in\(^4\))
- \(p \) = design pressure, (psig)
- \(a \) = bellows effective area, (in\(^2\))
- \(f \) = bellows initial spring rate per convolution, (lb/in/conv.)
- \(e_x \) = axial stroke of bellows per convolution, (in/conv.)

Note: When bellows is compressed in operation, use (+) for flex; when extended, use (-) for flex.

Guide spacing for standard wall carbon steel pipe may be determined from the chart shown in the appendix. (Pg. 15) Even if a particular application should involve axial movement only, the use of a single guide should be avoided as it may act as a fulcrum and impose a lateral or an angular deflection on the bellows that was not intended to be imposed on the bellows. However, there are instances where a single guide will be adequate. This will be illustrated in the next section.

IV. Sample Installations

In this section a number of examples will be given illustrating good engineering practice regarding the installation of a single or multiple bellows in a piping system. (For an explanation of the symbols used in the diagrams, please refer to Table 1 in the appendix.

Figure 3 illustrates standard practice regarding the use of a single Flexijoint to absorb axial pipe movements. Please notice that there is one expansion joint located between the main anchors and the close proximity of the first pipe guide (G1). Also, notice the relative spacing of the intermediate guides.
Figure 4 illustrates typical practice when using two expansion joints in a relatively long run of pipe. Note that an intermediate anchor was employed to divide the straight run into two smaller individually expanding segments. Again, note the guide spacing and the location of the main anchors. There is an alternative to this example. If the total expansion can be accommodated by one expansion joint, an Anchorbase Flexijoint can be employed. This will eliminate one of the bellows in Figure 4 and it will also provide its own intermediate anchor. Be certain to consult Ethylene before using an Anchorbase Flexijoint in this situation for the total amount of axial movement is critical in the design of the bellows. Ethylene will also need to know all loads expected to be imposed on the intermediate anchor.

Figure 5 illustrates good engineering practice when using Flexijoints to absorb axial pipe movements in a straight run with a branch connection. The main anchor at the branch connection must be designed to absorb the axial thrusts of the expansion joint in the branch, in addition to the resultant of the loadings from the expansion joints in the main run. Again, please note the guide spacings.

Figure 6 illustrates good engineering practice when absorbing axial expansion in a straight run containing a reducer. A main anchor must be placed at the point of reduction and it must be designed to absorb the force differential between the expansion joints on either side of the reducer. Again, note the guide spacing. Also note the close proximity of the bellows to the main anchor.
Figure 7 illustrates the use of a Flexijoint in a line containing an offset. Ethylene cannot recommend this configuration as it will perform satisfactorily only within certain limits. Note that, as in **Figure 3** there are main anchors at both ends of the run to absorb the terminal reactions, and that the guides are spaced accordingly. All loads must be transmitted through the offset leg, and, as a result, there will be a bending moment in the piping. Should the line size be small, the offset appreciable, or should the movement and pressure thrust forces from the bellows be relatively high, the piping may be overstressed.

Again, note the placement of the bellows next to a main anchor, and notice the placement of the alignment guides. Notice that guides are placed close to the ends of the offset; this will tend to minimize the bending moments. Be careful: though the moments are minimized, the guide loadings may become appreciable.

Figure 8 illustrates good engineering practice regarding the use of a Flexijoint to absorb both axial and lateral displacements. The use of a Flexijoint to absorb movements in more than one axis involves the careful examination of many variables such as the piping configuration, loading limitations on connected equipment, desired cycle life, operating conditions, and the available support structure, if any.

Note that **Figure 8** closely resembles **Figure 1**, which was for axial movement only. The Flexijoint is located at one end of the pipe run, with main anchors at both ends and the guide spacing is per EJMA standard practice. This provides proper control of movement and protects the pipe from buckling. Note, that in this example, the anchor on the left side is a directional main anchor, often called a bump-stop. This directional main anchor is designed to absorb all thrusts in the direction of the expansion joint's axis while still allowing movement laterally. This lateral movement results from the thermal growth of the short leg on the left, which is absorbed by the lateral deflection of the expansion joint.
Figure 9 is an alternative to Figure 8. This arrangement allows the expansion, resulting from the growth of the longer leg, to be absorbed laterally by the bellows. Thus, with no compressive loading, the long leg only requires an intermediate anchor and directional guiding. The bellows must still, of course, absorb the axial deflection resulting from the growth between the two main anchors. The alignment guide and the directional main anchor may be combined into one device.

![Figure 10](image)

Figure 10 is a modification of Figure 9. This arrangement eliminates the directional main anchor by the use of limit bolts on the Flexijoint. When a bellows is equipped with limit bolts, it can only absorb its internal axial growth; the limit bolts will contain the internal pressure thrusts. As a result, any axial growth of the short leg in Figure 10 must be imposed as a deflection of the longer leg. Note the use of the lateral restraint, the planar guide (PG). The situation may arise when the flexibility of the leg is insufficient and if the length of the short leg is suitable, tie-rods spanning the entire length of the short leg can be installed so no deflection is imposed on the long leg.

This example is a preferred arrangement. Where possible, try to equip bellows with tie-rods and take movements laterally. UNDER NO CIRCUMSTANCES ARE THE LIMITLINKS™ OR LIMIT BOLTS ON AN ETHYLENE FLEXIJOINT TO BE CONSIDERED AS SUBSTITUTES FOR PIPE ANCHORS. THEY ARE SAFETY DEVICES ONLY! Limitlinks are designed to prevent catastrophic failure of a Flexijoint should a main pipe anchor fail.

![Figure 11](image)

Figure 11 illustrates the cold-springing of a Flexijoint. Where the lateral deflection imposed on this joint is very great, a shortening of the bellows, resulting from the deflection of the tie-rods, occurs. Extreme care should be taken to insure that sufficient piping flexibility exists to accommodate this deflection. Cold-springing, as in Figure 10, can minimize the lateral deflection. Please consult Ethylene whenever a cold-springing condition occurs.
V. System Design Checklist

This section reviews some basic considerations to be evaluated prior to making any detailed calculations. Some of these items fall outside the information supplied to the bellows manufacturer and must be considered by the design engineer.

1. Operating Pressure ______ psig.
2. Operating Temperature ______ °F
3. Maximum Upset Pressure ______ psig.
 a. Limited by relief valve Yes ____ No _____
 b. Limited by pump discharge pressure Yes ____ No _____
 c. Limited by rupture disc Yes ____ No _____
 d. Limited by other safety appliance Yes ____ No _____
4. Maximum Upset Temperature ______ °F
 a. Limited by what means? ____________________________
 b. Is runaway reaction or other form of Exotherm possible? Yes ____ No _____
 c. Is maximum upset temperature coincident with higher upset pressure or in inverse relationship? Yes ____ No _____
5. Maximum obtainable vacuum? _____ in. H₂O ______ mmHg.

Vacuum can and does often occur during start-up or shut-down even though not part of design criteria. Investigate carefully and determine if a vacuum beaker is required. Flexijoints® can be designed to handle full vacuum at temperatures to 400°F.

6. Other factors
 a. Is the equipment to which a bellow is connected on load cells? Yes ____ No _____
 b. If so, how many bellows in total are connected to same equipment? ______
 c. What is the maximum total force permitted to act upon this equipment without effecting instrument readings? ________ lbs.
 d. Can the instruments be calibrated to compensate for the forces exerted by the bellows? Yes ____ No _____

7. Surges
 a. Can water hammer or other forms of surge take place in the piping system? Yes ____ No _____
 b. Are there quick closing check valves in system? Yes ____ No _____
 c. Can these be modified to non-slam types by addition of springs, counterbalances or other means? Yes ____ No _____
 d. Are there quick closing or opening, automatic or remotely operated shut-off valves in the system? Yes ____ No _____
 e. Can they be made "time delay to close" (or open?) Yes ____ No _____
 f. Are there surge eliminators in the system if slow closing check or automatic valves are not feasible? Yes ____ No _____
 g. Can the shut-down of a pump cause water hammer? If so, what steps have been taken to control the surge? ____________________________

NOTE: Water hammer can cause catastrophic failure of any expansion joint.

8. Are there positive displacement pumps in the system? If so, how is excessive pressure relieved? ____________________________
 Yes ____ No _____
9. Shut-off Valves
 a. Is the bellows between two shut-off valves in a line carrying fluid with a high coefficient of expansion? (such as liquid chlorine) Yes ___ No ___
 b. If so, what provision exists for pressure relief if the line experiences a temperature (and therefore pressure) increase with both valves in closed position? ______________

10. Abrasive
 a. Is the fluid conveyed abrasive? Yes ___ No ___
 b. If so, determine its' effect on the convolutions. Consider the use of an internal liner. ______________

11. a. Is the fluid conveyed highly toxic, carcinogenic, flammable or otherwise dangerous? Yes ___ No ___
 b. If so, does it fall into category "M" as defined in ANSI B31.3 Chapter VIII (1976 or later) or other similar codes or governmental regulation? Consider the necessity of using a Flexarmor® Flexjoint PTFE Lined Stainless Steel Expansion Joint. (In case of an external fire the Flexjoint because it is a thermoplastic, will be destroyed quickly.) Yes ___ No ___

12. If the joint is bolted to a storage tank located on unsettled ground where there is the possibility of settlement or tilting of tank, has there been sufficient allowance made (on the conservative side) in selection of joint to allow maximum conceivable movement? Yes ___ No ___

13. Sometimes it is necessary to bolt a bellows directly to a quarter turn valve (plug, ball, butterfly) which in turn is bolted to a fragile tank outlet. Consequently it becomes necessary to support the valve independently thus preventing valve turning torques from being transmitted to the tank nozzle or the expansion joint. In case of damage to the tank nozzle the entire contents of the tank may be lost. Consider use of gear operators on valves, or multiple turn valves such as diaphragm or gate valves. Yes ___ No ___

14. Turbulence, high fluid velocity, steam, abrasive materials or materials which may settle in convolutions may necessitate use of Linersleeves™. Investigate process stream for possible need of linersleeves.

15. Are PTFE spacer-washers specified if hooking up to brittle mating flanges? When mating to a flat-faced brittle flange, PTFE spacer washers must be used around the bolt holes to produce a flat-face effect. Yes ___ No ___

16. COMPONENT AND MATERIAL CONSIDERATIONS
 PTFE joints can be used with almost any type and kind of piping materials; the considerations which should be analyzed are pressure, vacuum, temperature, and service. PTFE bellows work well with the piping materials listed below provided of course, the basic design conditions are met.
 a. All metallic piping.
 b. All solid plastic piping.
 c. Fiberglass reinforced plastic: both commercially available standard off-the-shelf products and piping custom made by the hand lay-up method.
 d. Asbestos or graphite reinforced phenolic pipe.
 e. Impervious Graphite pipe.
 f. Glass pipe.
 g. Glass-lined steel pipe.
 h. Plastic-lined steel pipe.
VI. Bolting Considerations

PTFE expansion joints may be bolted to any mating pipe; in some cases without difficulty while in other cases damage may occur to either the expansion joint or the mating flange if extreme caution is not taken. If the Flexijoint recommended bolt torques are exceeded, “cold flow” of the PTFE flare may result making sealing difficult. Therefore, it is extremely important that bolting be done with torque wrenches to the specified limits.

PTFE envelope gaskets may be used at anytime with Flexijoints. Often gaskets are not required because the PTFE flare face forms its own gasket, but certain piping materials dictate the use of PTFE envelope gaskets. Glass-lined steel is typical of such a case because of the uneven flange surface resulting from the glassing operation. Mating metallic or press-molded FRP flanges may contain deep serrations, thus requiring envelope gaskets.

Extreme care must be used when bolting to brittle materials such as impervious graphite, fiberglass reinforced plastic, glass-lined steel, etc. It is far less costly to damage a Flexijoint flare than to destroy a graphite heat exchange nozzle or a Furan storage tank nozzle. Therefore, when bolting to stress sensitive equipment, bolt loads specified by the equipment manufacturer should not be overlooked.

Flexijoints flare faces are raised face sealing surfaces. When mating to a flat faced brittle flange, PTFE space washers must be used around the bolt holes to produce a flat face effect.

VII. Liners and Shields

Serious consideration must be given to the use of liners if the bellows is subjected to abrasive materials. While PTFE is a superior bellows material it does exhibit a basic weakness, (poor abrasion resistance) and this can most often be compensated for by the use of a PTFE or metallic liner.

A second important consideration concerning the requirement of a liner is the fluid velocity. Ethylene Flexijoints® require Linersleeves when smooth flow is desired and friction losses are to be minimized. If flow velocities are high a resonant vibration of the bellows may occur; as this condition must be avoided, an Ethylene Linersleeve is required. A rule of thumb, postulated by EJMA, is to use a liner when:

a) For Liquids:
 In pipes up to 6” diameter, velocity exceeds 2 feet per second per inch of diameter. In pipes over 6”, velocity exceeds 10 feet per second.

b) For Gases:
 In pipes up to 6” diameter, velocity exceeds 4 feet per second per inch of diameter. In pipes over 6” diameter, velocity exceeds 25 feet per second per inch of diameter.

If turbulence is generated directly upstream of a Flexijoint, a liner should be specified. Please observe Figure 6, on page six, of Ethylene Bulletin 2002; when a liner is used, the thickness of the liner must be added to the overall length of the bellows.

All Ethylene Flexijoints should be ordered with Flexishield™ covers. The added expense is relatively small and the cover will help protect the bellows from external mechanical damage after installation, as well as help to prevent fluid spray in the event of a pressure or temperature surge (beyond the design limit of the bellows) that could lead to failure of the bellows.

VIII. Specifications

The final control on proper application, once the piping has been properly designed, is the expansion joint specification. Ethylene requires very specific information to properly design an expansion joint.

First, the fluid properties must be stated. Both the constituents of the flowing media and its velocity must be noted. While a Flexijoint, made of PTFE fluorocarbon resin, is practically inert to most any chemical compound, the information is vital to Ethylene.

Be certain to specify flange diameter and drilling. Ethylene Flexijoint flanges conform to ANSI B16.5 standards, but Ethylene can accommodate any optional configurations.

Specify a Flexishield cover. As stated previously, this will add little extra cost but may save the Flexijoint from mechanical damage after installation.

Describe the bellows. Start with the size; list the nominal diameter of the joint. List the installation position. Is it horizontal? Vertical? If the installation is vertical, is the flow up or down? List the number of convolutions and the installed length, found in Ethylene Bulletin 2002. If, based on the data you supply, Ethylene agrees with your selection, this is what will be supplied. If Ethylene disagrees with your selection, they will notify you immediately.
IX. Installation Notes

Providing that the bellows has been engineered properly, and that the piping and its restraints have been designed properly, then careful attention to proper installation procedures will result in a Flexijoint installation that will have a service life that is as good as the pipe to which it is connected.

The most common installation error is when the bellows is forced to fit an excessive, beyond construction tolerance, gap in piping. The piping design engineer must strive to ensure that the construction personnel make the piping fit the expansion joint and not vice versa. **When a Flexijoint is stretched, compressed, or offset to fit poorly fabricated pipe, it is probable that the joint will not perform well in service.** This is why the installation tolerance must be added to the expected bellows deflections, to accommodate reasonable expected misalignments. Obviously, any misalignments of greater magnitude than the stated installation tolerance are unacceptable as the bellows was not designed to accommodate such excessive deflection. The installation personnel must be made aware of the fact that the expansion joint is not there for their convenience. It must be located just as carefully as a pump or other piece of equipment.

When a Flexijoint arrives in the field, it should be examined for possible damage during transit. Look for broken hardware, nicks, scratches, etc. Check the container for nut, bolts, removable liners or other loose parts. Ethylene Flexijoints should be stored in clean, dry, protected areas in their shipping containers. Do not allow them to be exposed to work traffic or dirt.

If a Flexijoint is to be lifted by a crane, use only the designated lifting lugs. Never use a chain or wire rope directly on a Flexijoint bellows, or on an unrestrained Flexijoint that may deflect when lifted. Failure to follow this procedure will result in a bellows that will be damaged and may then fail in service.

Because of the notch sensitivity of the PTFE material, Flexijoints must remain free from abrasion and nicks before, during, and after installation. Weld splatter spells death to PTFE corrugations; protect Flexijoints from weld splatter at all costs. Likewise, do not use wire brushes, steel wool or other abrasives near Ethylene Flexijoints. Scratches and abrasions will reduce cycle life and cause premature bellows failure.

When shipping bars are attached to a Flexijoint (as in a factory cold-sprung installation), do not remove them until the entire piping system is installed, including all pipe restraints. **Be sure to remove the shipping bars prior to testing and start-up.** Proper test procedures should be adhered to; the Flexijoint must not be subjected to test pressures higher than those designated on the bellows specification. Under no circumstances is the system to be pressure tested until the entire system, with its pipe restraints, is installed and functional.

In the appendix is a copy of Ethylene Bulletin 4001. This bulletin contains installation instructions and is packed with every Flexijoint. These instructions are to be followed, not discarded.
Summary

It should be obvious by now that Ethylene Flexijoints are to be carefully engineered into piping systems and not purchased as commodity items. If the piping is designed and restrained properly, the Flexijoint should last as long as the piping system; providing, of course, that the bellows is installed properly.

Start-Up Check List
The final control any designer has is to visit the field, prior to start-up, to ensure that the piping system, including all its restraints, was installed properly. It is important to insure that:

1. All restraints are positioned and will function exactly as the designer intended.
2. The piping was aligned properly and that the Flexijoint was not made to fit a poorly fabricated pipe arrangement.
3. The pipe guides are in place and correctly positioned.
4. All Flexijoints are covered with a shield wherever possible.
5. The Flexijoints are not misaligned beyond recommended limits. If limit bolts are used, the bolts should not be hung-up or cocked in the holes of the flanges thru which the limit bolts pass.
6. The Flexijoints are installed within their neutral or normal length. If the joint is fully expanded or compressed prior to start-up (or even after start-up) the piping assembly is faulty.
7. No weld splatter or metal chips or other types of foreign material are present.
8. Provisions have been made to prevent pressure or temperature surges.

This manual is intended to be used as a guide for Good Engineering Practice regarding the use of Ethylene Flexijoints. This does not imply that Ethylene Corporation takes any responsibility for any Flexijoint installation. Ethylene will furnish a quality product; it is the piping designer's responsibility to insure that this product is applied and installed correctly.

If a designer ever has any questions regarding an expansion joint application, he should not hesitate to contact Ethylene Corporation.

Bibliography

Standards of the Expansion Joint Manufacturers Association, Inc.

Survey Report on Structural Design of Piping Systems and Components,

Table 1 Symbol Nomenclature

Maximum Recommended Spacing for Pipe Guides

(Axial Deflection Only—Std. Weight Carbon Steel Pipe)

Expansion joints should not be located immediately downstream from turbulent producing devices such as valves, sudden pipe size changes, etc. If it is impossible to locate the expansion joint an adequate distance away from the turbulence producers, the joint should be equipped with a heavy liner.

Wherever possible, an expansion joint should be located immediately adjacent to a pipe anchor; if not possible, pipe guides should be used on both sides of the expansion joint. The first pipe guide must be located within 4 pipe diameters of the expansion joint—the second guide must be within 14 pipe diameters of the first guide—recommended spacing for additional guides along the balance of the pipe section can be determined from the chart below.

Proper alignment is extremely important in the installation of all expansion joints. No expansion joint will operate properly unless the pipe line in which it is installed is securely anchored and guided, and adequately supported.
Coefficients of Expansion Piping Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Mean Linear Expansion (\text{in/in}^o\text{F} \times 10^{-4})</th>
<th>Total Expansion (\text{in/100 F} \times \text{in of 100}^o\text{F})</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Carbon-Moly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Chrome (thru 3 Cr Mo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Cr Mo thru 9 Cr Mo</td>
<td>6.3</td>
<td>0.76</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>3½% Nickel</td>
<td>6.8</td>
<td>0.82</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Aluminum</td>
<td>13.6</td>
<td>1.63</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Gray Cast Iron</td>
<td>6.1</td>
<td>0.73</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Bronze</td>
<td>10.2</td>
<td>1.22</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Brass</td>
<td>10.2</td>
<td>1.22</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>79 Cu 30 Ni</td>
<td>8.9</td>
<td>1.07</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Titanium</td>
<td>5.1</td>
<td>0.61</td>
<td>Tico Titanium</td>
</tr>
<tr>
<td>Saran Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Polypropylene Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Kynar Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Teflon Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Rubber Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Glass Lined Carbon Steel</td>
<td>6.8</td>
<td>0.82</td>
<td>Used Carbon Steel Data</td>
</tr>
<tr>
<td>Hastelloy G</td>
<td>7.7</td>
<td>0.92</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Hastelloy B</td>
<td>5.8</td>
<td>0.70</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Hastelloy C</td>
<td>6.8</td>
<td>0.82</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Hastelloy X</td>
<td>7.8</td>
<td>0.94</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Haynes Alloy 718</td>
<td>7.5</td>
<td>0.90</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Haynes Alloy R-41</td>
<td>6.8</td>
<td>0.82</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Haynes Alloy 25</td>
<td>7.2</td>
<td>0.86</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Haynes Multimet</td>
<td>8.6</td>
<td>1.03</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>Haynes Multimet 188</td>
<td>7.0</td>
<td>0.84</td>
<td>Cabot Corp., Stellite Div.</td>
</tr>
<tr>
<td>304, 304L S.S.</td>
<td>10.4</td>
<td>1.25</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>316, 316L S.S.</td>
<td>10.3</td>
<td>1.24</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>317 S.S.</td>
<td>10.3</td>
<td>1.24</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>310, 310S S.S.</td>
<td>9.7</td>
<td>1.16</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>309 S.S.</td>
<td>10.0</td>
<td>1.20</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>347, 348 S.S.</td>
<td>10.4</td>
<td>1.25</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>321 S.S.</td>
<td>10.4</td>
<td>1.25</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>305 S.S.</td>
<td>10.5</td>
<td>1.26</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>302 S.S.</td>
<td>10.4</td>
<td>1.25</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>20 Cb3</td>
<td>8.3</td>
<td>1.00</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>430 S.S.</td>
<td>6.6</td>
<td>0.79</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>405 S.S.</td>
<td>6.6</td>
<td>0.79</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>410 S.S.</td>
<td>6.5</td>
<td>0.80</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>420 S.S.</td>
<td>6.8</td>
<td>0.82</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>450 S.S.</td>
<td>5.7</td>
<td>0.66</td>
<td>Carpenter Steel</td>
</tr>
<tr>
<td>Fibercast Centrifugally Cast</td>
<td>13.0</td>
<td>1.56</td>
<td>Fibercast</td>
</tr>
<tr>
<td>F-Chem</td>
<td>10.5</td>
<td>1.26</td>
<td>Fibercast</td>
</tr>
<tr>
<td>PVC</td>
<td>1120</td>
<td>3.60</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>PVC</td>
<td>1220</td>
<td>4.20</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>PVC</td>
<td>2110</td>
<td>6.00</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>PVC</td>
<td>2112</td>
<td>5.40</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>PVC</td>
<td>2116</td>
<td>4.80</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>PVC</td>
<td>2120</td>
<td>3.60</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Vinylidene Fluoride (Kynar)</td>
<td>85.0</td>
<td>10.2</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Vinylidene/Vinyl Chloride</td>
<td>100.0</td>
<td>12.0</td>
<td>ANSI B 31.3</td>
</tr>
</tbody>
</table>

The data shown represents information derived from sources as indicated.

In most instances the coefficient of expansion shown is applicable at -40°F (235°C) which is approximately the maximum temperature limit for the PTFE joints.

These data are for information only and it is not implied that materials are suitable for the temperature shown.

Individual compounds may vary from the values shown. Consult manufacturer for specific values for his products.
<table>
<thead>
<tr>
<th>Material</th>
<th>Mean Linear Expansion in/in/F × 10⁻⁶</th>
<th>Total Expansion in/100 F/Δt of 100°F</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoloy 800</td>
<td>8.8</td>
<td>1.07</td>
<td>Int'l Nickel (Huntington Alloys)</td>
</tr>
<tr>
<td>Nickel 200</td>
<td>7.7</td>
<td>0.92</td>
<td>Int'l Nickel (Huntington Alloys)</td>
</tr>
<tr>
<td>Monel 400</td>
<td>8.6</td>
<td>1.03</td>
<td>Int'l Nickel (Huntington Alloys)</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>7.7</td>
<td>0.92</td>
<td>Int'l Nickel (Huntington Alloys)</td>
</tr>
<tr>
<td>Polypropylene PP 1110</td>
<td>48.0</td>
<td>5.76</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polypropylene PP 1208</td>
<td>43.0</td>
<td>5.16</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polypropylene PP 2105</td>
<td>40.0</td>
<td>4.8</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Borosilicate Glass</td>
<td>1.8</td>
<td>0.22</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Impregnated Graphite</td>
<td>2.4</td>
<td>0.29</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Hard Rubber (Buna N)</td>
<td>40.0</td>
<td>4.80</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polysulfone</td>
<td>31.0</td>
<td>3.72</td>
<td>Union Carbide</td>
</tr>
<tr>
<td>Havex 41</td>
<td>13.0</td>
<td>1.56</td>
<td>Havex Indust.</td>
</tr>
<tr>
<td>Havex 61</td>
<td>13.0</td>
<td>1.56</td>
<td>Havex Indust.</td>
</tr>
<tr>
<td>Bondstrand 2000</td>
<td>8.5</td>
<td>1.02</td>
<td>Amercoat</td>
</tr>
<tr>
<td>Bondstrand 4000</td>
<td>8.8</td>
<td>1.07</td>
<td>Amercoat</td>
</tr>
<tr>
<td>Bondstrand 5000</td>
<td>8.8</td>
<td>1.07</td>
<td>Amercoat</td>
</tr>
<tr>
<td>A.O. Smith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Thread 2", 3", 4"</td>
<td>13.5</td>
<td>1.62</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>6",-12"</td>
<td>8.8</td>
<td>1.07</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>Silver Thread 2", 3", 4"</td>
<td>12.2</td>
<td>1.46</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>6",-12"</td>
<td>8.8</td>
<td>1.07</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>Green Thread 1", 1½", 6",-12"</td>
<td>11.4</td>
<td>1.37</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>2", 3", 4"</td>
<td>12.7</td>
<td>1.52</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>Poly Thread (All Sizes)</td>
<td>10.5</td>
<td>1.26</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>Chemline</td>
<td>10.8</td>
<td>1.30</td>
<td>A.O. Smith /Inland</td>
</tr>
<tr>
<td>Acetal</td>
<td>AP 2012</td>
<td>0.24</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Acrylonitrile-Butadiene-Styrene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS 1208</td>
<td>60</td>
<td>7.20</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>ABS 1210</td>
<td>55</td>
<td>6.60</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>ABS 1316</td>
<td>40</td>
<td>4.80</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>ABS 2112</td>
<td>40</td>
<td>4.80</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Cellulose Acetate Butyrate (CAB)</td>
<td>MH 08</td>
<td>9.60</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td></td>
<td>S 004</td>
<td>11.40</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Chlorinated Polyvinyl Chloride (CPVC)</td>
<td>4120</td>
<td>35</td>
<td>4.20</td>
</tr>
<tr>
<td>Polybutylene PB 2110</td>
<td>72</td>
<td>8.64</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyether, Chlorinated</td>
<td>45</td>
<td>5.40</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyethylene PE 1404</td>
<td>100</td>
<td>12.00</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyethylene PE 2305</td>
<td>90</td>
<td>10.80</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyethylene PE 2306</td>
<td>80</td>
<td>9.60</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyethylene PE 3306</td>
<td>70</td>
<td>8.40</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polyethylene PE 3406</td>
<td>60</td>
<td>7.20</td>
<td>ANSI B 31.3</td>
</tr>
<tr>
<td>Polysyphylene POP 2125</td>
<td>30</td>
<td>3.60</td>
<td>ANSI B 31.3</td>
</tr>
</tbody>
</table>

The data shown represents information derived from sources as indicated. In most instances the coefficient of expansion shown is applicable at 400°F (205°C) which is approximately the maximum temperature limit for the PTFE joints. These data are for information only and it is not implied that materials are suitable for the temperature shown. Individual compounds may vary from the values shown. Consult manufacturer for specific values for his products.
Pressure Conversion Chart

Absolute pressure values are on the right side of all vertical scales. Vacuum values are on the left side and are read from atmospheric pressure down. Gage pressure values are also on the left, but read from atmospheric pressures up. A straight edge placed on the chart through any known value will cross all other vertical scales at the correct conversion.
Design Data

Water Hammer

A moving column of liquid has momentum, or inertia proportional to its weight and velocity. When flow is stopped suddenly, as by a quick closing valve or check, this inertia is converted into a shock load or high pressure surge. The longer the line and the faster the liquid velocity, the greater the shock load will be. These shock loads can be of sufficient force to burst pipe and break fittings and valves. This is usually called water hammer.

Maximum pressure caused by water hammer, or momentum pressure surges, can be calculated from the chart below. The chart is based on data for water and is applicable to other similar industrial liquids. In general, good design will eliminate quick opening valves on anything but very short lines. (The reverse is true in using check valves when pumping against gravity or pressure. In this case valves should close as quickly as possible to keep the velocity of the liquid flowing back through the check valve to a minimum.)

Directions:
1. Liquid Velocity (ft/sec), pipeline length (ft) and valve closing time (sec) must be known.
2. Place a straight edge on the liquid velocity in pipe (line A) and the pipeline length (line D).
3. Mark intersection of straight edge with pivot line (line C).
4. Placed straight edge on mark just placed on pivot line (line C) and on valve closing time for valve being used (line A).
5. The intersection of the straight edge with the pressure increase line (line B) is the liquid momentum surge pressure (water hammer).

The liquid momentum surge (water hammer) should be added to the previous line pressure to determine the maximum line pressure to be used to determine selection of pipe schedule or wall thickness.

The chart is based on the formula

\[P = \frac{0.070 \cdot VL}{T} \]

Where \(P \) is increased in pressure due to momentum surge in psi, \(L \) is pipeline length in feet, \(V \) is liquid velocity in ft. per sec. \(T \) is valve closing time in seconds.
Expansion Joint Data Sheet

1.0 FLUID PROPERTIES:
 1.1 Medium__
 1.2 Velocity _________________________________ ft./sec.

2.0 MATERIALS OF CONSTRUCTION:
 2.1 Bellows __
 2.2 Flanges __
 2.3 Piping ___
 2.4 Liner ___
 2.5 Cover __

3.0 SPECIFICATIONS:
 3.1 Flanges __
 3.2 Piping ___

4.0 SPRING RATES:
 4.1 Axial ______ lbs./in.
 4.2 Lateral ______ lbs./in.
 4.3 Angular ______ in.-lbs./deg.

5.0 JOINT FEATURES:
 5.1 Size ______ in. nominal dia.
 5.2 Type __
 5.3 Internal Sleeve Yes □ No □
 5.4 External Cover Yes □ No □
 5.5 Installation Position
 Horizontal □ Flow Up □
 Vertical □ Flow Down □
 5.6 Installed Length ______ in.
 5.7 Pressure Thrust Area ______ sq. in.

6.0 STAMPING:
"CONDITIONS NOT TO BE EXCEEDED"
 6.1 Pressure Test ______ psig.
 6.2 Pressure ______ psig @ ______ °F
 6.3 Axial Movement ______ in.
 6.4 Lateral Movement ______ in.
 6.5 Angular Movement _______ deg.

7.0 Design Parameters:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Vacuum In., Hg.</th>
<th>Pressure Psig</th>
<th>Temp. Deg. F</th>
<th>Movements (1)</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Axial-In.</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td>Lateral-In.</td>
<td>-</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td>Angular-Deg.</td>
<td>1000</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Weather</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Axial movement causing joint to compress is designated as Positive (+), Axial Extension as Negative (-).
BULLETIN NO. 4001
INSTALLATION INSTRUCTIONS
PTFE-FLUOROCARBON*
Flexijoint*

INSPECTION
After inspection return the Flexijoint to its carton until time for installation so that the white PTFE flares at each end (which act as gaskets) will remain flat.

FLARES
During installation protect the PTFE flares from abrasion, cutting, paint, welding splatter, etc.

BOLT TIGHTENING
When installing flanged Flexijoints prevent overtightening by limiting bolt torque to:

<table>
<thead>
<tr>
<th>IPS</th>
<th>Torque Ft.-Lbs.</th>
<th>IPS</th>
<th>Torque Ft.-Lbs.</th>
<th>IPS</th>
<th>Torque Ft.-Lbs.</th>
<th>IPS</th>
<th>Torque Ft.-Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>5</td>
<td>2</td>
<td>25</td>
<td>5</td>
<td>40</td>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>3/4</td>
<td>5</td>
<td>2-1/2</td>
<td>30</td>
<td>6</td>
<td>45</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>40</td>
<td>8</td>
<td>60</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>1-1/4</td>
<td>10</td>
<td>3-1/2</td>
<td>25</td>
<td>10</td>
<td>50</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>1-1/2</td>
<td>15</td>
<td>4</td>
<td>30</td>
<td>12</td>
<td>60</td>
<td>24</td>
<td>90</td>
</tr>
</tbody>
</table>

ANCHORING
Most fluid conducting systems are subject to a variety of forces such as thermal, mechanical, and hydraulic, which produce unwanted pipe movement. Safe installation of Flexijoints and similar devices of rubber, metal and plastic requires that the components to which they are connected be anchored, guided, or otherwise restrained so that these forces do not flex or distort the Flexijoint or similar device beyond the limits for which it was designed. The limits for Flexijoints are shown on the other side of this sheet. It is important to remember, also, that when a Flexijoint or similar device is pressurized internally it tends to expand, and this expanding force can be great enough to create unsafe stresses. If pipe movement caused by forces in the piping system or by the Flexijoint itself is not provided for please consult your design engineer or us before installation.

IMPORTANT!
Improper installation of this part might be dangerous. Please comply with the following instructions.

IMPORTANT!
La instalación impropia de esta pieza puede ser peligrosa. Por favor lea las instrucciones. Si usted no puede leer Inglés, pida ayuda antes de continuar.

WICHTIG!

IMPORTANT!
Installateur incorrectement cette pièce peut être dangereux. Prière d'observer strictement les instructions suivantes. Si vous ne lisez pas l'anglais, faites le traduire avant de procéder à l'installation.

IMPORTANT!
Inadatta installazione di questa parte può essere pericolosa. Per favore seguire le istruzioni seguenti. Se non leggete l'Inglese, fatele tradurre prima di proseguire.

VERTICAL PIPE SUPPORT
Provide support for vertical piping at any point where the weight of the piping might cause the Flexijoint to be flexed beyond the limits shown on the other side of this sheet.

ALIGNMENT
For greatest Flexijoint life keep misalignment minimum. Maximum limits are shown on the other side of this sheet.

FLANGE SPACING
Piping systems should be designed so that when Flexijoints are bolted in place, and before the system is put on stream, their lengths from contact face to contact face are as close as practical to the normal lengths shown on the other side of this sheet.

MAINTENANCE
No maintenance is necessary. It is recommended, however, that Flexijoints be inspected at appropriate intervals to determine whether they have reached the limits of flexure shown on the other side of this sheet. If one or more of the Limitlinks®, Collarbars®, or Cablecords®, whichever is being used, is in tension, or if the T-Bands® are touching each other, the limit of flexure has been reached, and stresses being generated elsewhere in the system are threatening failure. Steps should be taken immediately to relieve them.

*Flexijoints is Ethylene Corporation's registered tradename for its bellows, expansion joints, and flexible couplings.
Typical PTFE Expansion Joint Installations
20" diameter Flexjoint® installed to absorb 1" of thermal growth of FRP piping system in pulp mill effluent line. Previous FRP system without expansion joints cracked due to overstressing (see insert photo). PTFE Linersleeve™ was used to prevent solid build-up in convolutions.

16" diameter Flexjoint® with Titanium Linersleeve™ and Titanium Vacubands™ designed to dampen system vibration in highly corrosive chlorine dioxide service. (One of 14 such installations world-wide)

30" diameter Flexjoint® with J-Bolt™ flanges installed to prevent over stressing of glass-lined steel column and mating elbow. Vacuband™ of Tantalum provide for full vacuum service at 350°F in sulfuric acid concentration facility.
The World Leader in Fluoropolymer Technology

For over 50 years

Flexijoint® PTFE Expansion Joints

Flexijoint® is designed for severe service applications that demand consistent reliability, lower permeation rates and maximum travel. Available in sizes of 1/2" to 42" diameters with 2 to 12 convolutions to compensate for pipe movement, misalignment and/or vibration. Features include - Full vacuum resistance to 400°F, Uniformed PTFE wall thickness, T-Bands™ for convolution support and LimitLink™ axial restraints that eliminate cumbersome limit bolts. Flexijoints’ low spring rate is ideal for stress-sensitive FRP piping, graphite pumps and glass lined process vessels and equipment.

FlexArmor® PTFE Lined (double contained) Bellows

FlexArmor® combines a 321 stainless steel armored bellows with a Flexijoint® heavy wall PTFE liner to provide higher pressure capability (200psi), outstanding chemical resistance and the added security of double containment. The bellows have a size range to 24" diameter and can operate at temperatures from -40°F to +400°F. FlexArmor® bellows are designed and engineered to any specific customer requirements.

Factory Mutual Approved

FLO-VU® Sight Indicators With Safety Shield

Ethylene’s sight flow indicators incorporate energized PFA seals with a full 360° view Borosilicate glass that provides a continues bubble-light seal at 150psi even after repeated thermal cycling - GUARANTEED!

Available in 1" to 8" diameter and lengths from 5" to 30" and can operate at temperatures of -20°F to +350°F.

Also available with tri- clamp end connections and dual containment configuration.

MonoDerm™ Large Diameter Lined Pipe and Special Shapes

MonoDerm™ is Ethylenes trademark for its heavy duty, seamless lined piping components. Available in PTFE, PFA or ETFE with a size range from 1/2" to 42" diameter. Ethylene’s isostatic molding and high capacity rotational molding cells can line virtually any configuration imaginable such as piping headers, pump casings and valves.

EthylArmor® & pHampler® Dip Tubes, Spargers & Sampling

EthylArmor® is a PTFE lined and covered armored dip pipe or sparger designed exclusively for the rigorous demands of agitating vessels or the high stress of injection. Also available is Ethylene’s Solid PTFE dip pipes and spargers for non-agitated services.

pHampler® is a patented reactor sampling, monitoring and control system that eliminates fugitive emissions and employee exposure to hazardous media while providing genuine analyzed results.

T-Line Strainers™

Fully lined ETFE or PFA ductile iron strainers in sizes 2" to 8", temperatures to 450°F delivers maximum Cv's and chemical resistance while protecting your valuable downstream equipment such as lined pumps, heat exchangers and glass lined vessels.

Ethylene LLC., Information is Based on Technical Data and Testing that Ethylene Believes to be Reliable and is Subject to Change Without Notice. The Information is Intended for Use By Persons Having Technical Skill, At Their Own Discretion and Risk. Since Conditions and Use of Products are Outside of Ethylene’s Control, Ethylene LLC. Makes No Warranties, Express or Implied and Assumes No Liability in Connection With Any Use of This Information. Durcor-82™ Is a Trademark of Pureflex, Inc. Ethylene™, Flexijoint®, FlexArmor® FLO-VU® EthylArmor® pHampler® & MonoDerm™ T-Line Strainers™, T-Bands™ and LimitLink™ Are Either Registered or Trademarks of Ethylene LLC.

4855 Broadmoor Ave. - Kentwood, MI 49512
Phone: (616) 554-0900 Fax: (616) 554-3464
www.ethylene.com